Skip to main content

Analytical Chemistry: L#00 An Introduction

In all of the physical sciences, there is a high need to be analytical.  After all, being analytical is how we know with scientific certainty that what we hypothesize and theorize is legitimately true.


In a way, the physical sciences have an advantage in the analytical realm that the life sciences and social sciences don't have; it is exceedingly easier to get pull numbers out of experiments in the physical sciences than in either of the other two types of sciences.  After all, the life and social sciences have too many variables which can not be controlled for, for one reason or another.  After all, in economics (a social science), it is immoral to make some people be in poverty while making others financially prosper for any reason, much less to get numbers for analytics.  It is also immoral in medical science (a life science) to infect one group with disease while keeping others disease free for any reason, much less to get numbers for analytics.  So physical sciences is lucky to have fewer situations of amoral or immoral experiments to get numbers for analytical study than social or life sciences.

Muahahahaha
The final number matters here.  After all, in medicine, where you do want 5 mg of a medication, you do not want 5 kg, because that 5 kg will kill you.  The soda industry knew to recommend drinking a gallon of water a day in order to "stay hydrated" (read "keep lining our pockets"), because drinking much more than that will yield a higher likelihood of developing hyponatremia, a condition of over-hydration where the concentration of salt, sugar, and other vital compounds in your blood becomes too low (or to put it another way, they become too dilute).  This can be fatal.  So yes, even in ad campaigns, using the correct final number is vital.

We will constantly be working with matrices; not in a pop culture or a mathematical sense, but chemical matrices, which is the structure the chemical system makes up.  Sometimes this means ions, other times this means the chemistry forms a sponge-like structure.

Where's Neo when you need him?
Calibration is important within the range of study.  This is a method of making absolute certain that the device you're working with is responding correctly to stimuli.  After all, you don't want a cop to apply an uncalibrated breathalyzer when you're sober, because if you recently had vinaigrette on your salad, that uncalibrated breathalyzer will show you as intoxicated.  For any response curve like the breathalyzer, there is a nonlinear range from the origin of the graph to a certain critical point.  Past that critical point is the linear range, where it's just a horizontal line.

In this lecture series, I will cover the analytical methods for one particular physical science -- non-biological chemistry.  This process deals not only with the typical quantities of chemistry -- mass, volume, moles, concentration, etc. -- but also with statistical analysis -- probabilities, z-scores, distributions, etc.  This is a course for creating a more accurate intuition about the aspects of life which directly impacts us.


Take that as you will,
K. "Alan" Eister Î”αβ

Comments

Popular posts from this blog

Basic Statistics Lecture #3: Normal, Binomial, and Poisson Distributions

As I have mentioned last time , the uniform continuous distribution is not the only form of continuous distribution in statistics.  As promised, here are the three most common continuous distribution types.  As a side note, all sampling distributions are relative to the algebraic mean. Normal Distribution: I think most people are familiar with the concept of a normal distribution.  If you've ever seen a bell curve, you've seen the normal distribution.  If you've begun from the first lecture of this lecture series, you've also seen the normal distribution. This type of distribution is where the data points follow a continuous curve, is non-uniform, has a mean (algebraic average) equal to the median (the exact middle value), falls from highest probability at the mean to (for all practical purposes) zero as the x-values approach $\pm \infty$, and therefor has equal number of data points to the left and to the right of the mean, and has the domain...

Confidence Interval: Basic Statistics Lecture Series Lecture #11

You'll remember last time , I covered hypothesis testing of proportions and the time before that , hypothesis testing of a sample with a mean and standard deviation.  This time, I'll cover the concept of confidence intervals. Confidence intervals are of the form μ 1-α ∈ (a, b) 1-α , where a and b are two numbers such that a<b, α is the significance level as covered in hypothesis testing, and μ is the actual population mean (not the sample mean). This is a the statement of there being a [(1-α)*100]% probability that the true population mean will be somewhere between a and b.  The obvious question is "How do we find a and b?".  Here, I will describe the process. Step 1. Find the Fundamental Statistics The first thing we need to find the fundamental statistics , the mean, standard deviation, and the sample size.  The sample mean is typically referred to as the point estimate by most statistics text books.  This is because the point estimate of the po...

The Connections Between the Sciences

I apologize for taking so long with this entry of my blog. I have been abnormally busy lately with my academics and poetry. Today, I am writing on how all of the sciences are related to one another, in the hopes that you will come to realize that the sciences are not as separate as popular culture and news has us believe. This blog will be geared to those individuals – weather you're the average person or a student of science, or a full blown scientist – who have the opinion that the different fields of science are completely isolated from one another. This sentiment is not true, and I hope to show the false-hood of this concept here. In physics, we have the concept of “The Right-Hand-Rule”. This pretty much determines whether the a force perpendicular to two vectors is “positive” or “negative”. Torque is a good example of this. The amount of torque placed on, say, a bolt by a crescent wrench is perpendicular to the position vector and the fo...