Skip to main content

Chemicals Video Sources

These are the sources for my video on the scientific definition of the term chemical, seen here.

The colloquial definition of the word chemical comes from wiktionary, which defines chemicals as "an artificial chemical compound".  There is of course a negative conotation about the definition seen in the example they provide ("I color my hair with henna, not chemicals").  The non-colloquial, scientific definition of the word chemical comes from three text books:

“Biology: A Guide to the Natural World Fifth Edition”; David Krogh; 978-0-321-61655-5; p. 22
“Chemistry: The Central Science 11th Edition”; Theodore L. Brown; 978-0-13-600617-6; p. 5
“Essentials of Geology 4th edition”; Stephen Marshak; 978-0-393-91939-4; p. 7

They all agree that a chemical is “matter that has distinct properties and a constant composition that does not vary from sample to sample and cannot be separated by physical means.”

Comments

Popular posts from this blog

Basic Statistics Lecture #3: Normal, Binomial, and Poisson Distributions

As I have mentioned last time , the uniform continuous distribution is not the only form of continuous distribution in statistics.  As promised, here are the three most common continuous distribution types.  As a side note, all sampling distributions are relative to the algebraic mean. Normal Distribution: I think most people are familiar with the concept of a normal distribution.  If you've ever seen a bell curve, you've seen the normal distribution.  If you've begun from the first lecture of this lecture series, you've also seen the normal distribution. This type of distribution is where the data points follow a continuous curve, is non-uniform, has a mean (algebraic average) equal to the median (the exact middle value), falls from highest probability at the mean to (for all practical purposes) zero as the x-values approach $\pm \infty$, and therefor has equal number of data points to the left and to the right of the mean, and has the domain of $(\pm \i

Confidence Interval: Basic Statistics Lecture Series Lecture #11

You'll remember last time , I covered hypothesis testing of proportions and the time before that , hypothesis testing of a sample with a mean and standard deviation.  This time, I'll cover the concept of confidence intervals. Confidence intervals are of the form μ 1-α ∈ (a, b) 1-α , where a and b are two numbers such that a<b, α is the significance level as covered in hypothesis testing, and μ is the actual population mean (not the sample mean). This is a the statement of there being a [(1-α)*100]% probability that the true population mean will be somewhere between a and b.  The obvious question is "How do we find a and b?".  Here, I will describe the process. Step 1. Find the Fundamental Statistics The first thing we need to find the fundamental statistics , the mean, standard deviation, and the sample size.  The sample mean is typically referred to as the point estimate by most statistics text books.  This is because the point estimate of the populati

Basic Statistics Lecture #5: Baye's Theorem

As promised last time , I am going to cover Baye's Theorem. If Tree diagram is the common name for Bayes Theorem.  Recall that conditional probability is given by $P(A \mid B) = \frac{P(A \wedge B)}{P(B)}$.   For tree diagrams, let's say that we have events A, B 1 , B 2 , B 3 , … (the reason we have multiple B's is because they all are within the same family of events) such that the events in the family of B are mutually exclusive and the sum of the probabilities of the events in the family of B are equal to 1. Then we have $$P(B_i \mid A)= \frac{P(B_i)*P(A \mid B_i)}{\sum_{m=1}^{n}[P(B_m)*P(A \mid B_m)]}$$  What this means is reliant on the tree diagram. If we are only looking at the sub-items of A, this is what the tree diagram would look like. If J has a probability of 100%, and P(C) and P(D) are not 0, then when we are trying to find the probability of any of the B's being true given that A is true, we have to set the probability of A to be the entir